ach

ince larks)

larks)

lain

Larks)

bgy. larks)

wil

That

(arks

are

tion

7t).

ency arks)

larks)

nt is

ond

e of

Larks)

15.

tion

Larics

g of

idth

(zde)

 - E				

Third Semester B.E. Degree Examination, January/February 2004 Common to BM/EC/EE/TE/ML/IT/CS/IS

Logic Design

Time: 3 hrs.]

Max.Marks: 100

Note: 1. Answer any FIVE full questions. 2.All questions carry EQUAL marks.

1. (a) Explain the principle of duality.

(4 Marks)

- (b) Mention two categories of Boolean expressions based on their structure. Write these forms for any give three - variable function T(x, y, z).
- (c) Give the Shanon's expansion theorem.

(4 Marks)

(d) Explain the exclusive-or-function.

(4 Marks)

- 2. (a) Design an odd parity bit generator using gates for the decimal digits 0 to 9 represented in 84.21 BCD. Give the necessary truth table and draw the logic diagram. Explain.
 - (b) What code is used to label the row headings and column headings of a Karnaugh (4 Marks) map and why?
 - (c) Using K-map obtain the minimal sum of products and the minimal product of sums form of the function $f(a, b, c, d) = \sum m(1, 2, 3, 5, 6, 7, 8, 13)$
- 3. (a) Mention one advantage and one disadvantage of the Quine-McCluskey method for obtaining the prime implicants of a given Boolean function. Obtain all the prime implicants of the function.

 $f(v, w, x, y, z) = \sum m(4, 5, 9, 11, 12, 14, 15, 27, 30) + dc(1, 17, 25, 26, 31)$ Use Quinne-McCluskey method. Do you have any essential prime implicants.

(b) In what way MEV-K-map differs from the conventional K-maps? Simplify the function

$$f(a,b,c,d) = \Sigma_m(2,3,4,5,13,15) + dc(8,9,10,11)$$
 using a two variable MEV-K-map.

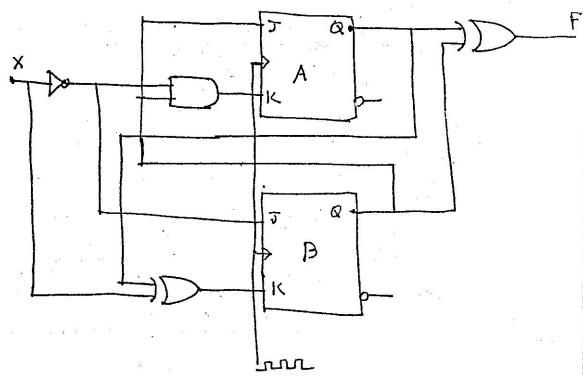
- (a) With the aid of a neat circuit diagram explain the operation of a 2-input TTL nand gate with totem output.
 - (b) Discuss how a resistor could be constructed using MOSFET. Give the resistor characteristics.
 - (c) Draw the NMOS as well as PMOS circuit diagrams to realise a NAND gate. Give the relevant truth tables. (6 Marks)
- 5. (a) Explain a 4 bit parallel adder with the carry look ahead scheme. Clearly indicate how this scheme improves the performance of the operation. (10 Marks)
 - (b) With the aid of block diagrams clearly distinguish between a decoder and encoder.
 - (c) Give a 4-to-1 MLX implementation of the three variable function

 $f = \sum m(1, 4, 5, 7)$

(6 Marks)

(8 Marks)

6. (a) Illustrate how a PLA can be used for combinational logic design with reference to the functions.


$$f_1(a,b,c) = \Sigma m(0,1,3,4)$$

 $f_2(a,b,c) = \Sigma m(1,2,3,4,5)$

Realize the same assuming, that a $3 \times 4 \times 2$ PLA is available.

(10 Marks)

- (b) Give the details of a master slave S-R flip flop. Draw the logic diagram. Explain the flip flop action during the control signal. Also give the function table.(10 Marks)
- 7. (a) Draw the block diagram of a mod-7 twisted ring counter and explain its operation. Give the count sequence table and the decoding logic used to identify the various states.

 (10 Marks)
 - (b) Construct the excitation table, transition table and state diagram for the Moore sequential circuit given below: (10 Marks) .

- 8. Write notes on:
 - (a) 1 bit comparator
 - (b) Fan in and Fan out
 - (c) Integration levels of IC's
 - (d) Binary full subtractor.

(4×5=20 Marks)

** * **